Suppression of large intraluminal bubble expansion in shock wave lithotripsy without compromising stone comminution: methodology and in vitro experiments.

نویسندگان

  • P Zhong
  • Y Zhou
چکیده

To reduce the potential of vascular injury without compromising the stone comminution capability of a Dornier HM-3 lithotripter, we have devised a method to suppress intraluminal bubble expansion via in situ pulse superposition. A thin shell ellipsoidal reflector insert was designed and fabricated to fit snugly into the original reflector of an HM-3 lithotripter. The inner surface of the reflector insert shares the same first focus with the original HM-3 reflector, but has its second focus located 5 mm proximal to the generator than that of the HM-3 reflector. With this modification, the original lithotripter shock wave is partitioned into a leading lithotripter pulse (peak positive pressure of 46 MPa and positive pulse duration of 1 micros at 24 kV) and an ensuing second compressive wave of 10 MPa peak pressure and 2 micros pulse duration, separated from each other by about 4 micros. Superposition of the two waves leads to a selective truncation of the trailing tensile component of the lithotripter shock wave, and consequently, a reduction in the maximum bubble expansion up to 41% compared to that produced by the original reflector. The pulse amplitude and -6 dB beam width of the leading lithotripter shock wave from the upgraded reflector at 24 kV are comparable to that produced by the original HM-3 reflector at 20 kV. At the lithotripter focus, while only about 30 shocks are needed to cause a rupture of a blood vessel phantom made of cellulose hollow fiber (i.d.=0.2 mm) using the original HM-3 reflector at 20 kV, no rupture could be produced after 200 shocks using the upgraded reflector at 24 kV. On the other hand, after 100 shocks the upgraded reflector at 24 kV can achieve a stone comminution efficiency of 22%, which is better than the 18% efficiency produced by the original reflector at 20 kV (p = 0.043). All together, it has been shown in vitro that the upgraded reflector can produce satisfactory stone comminution while significantly reducing the potential for vessel rupture in shock wave lithotripsy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Acoustic bubble removal to enhance SWL efficacy at high shock rate: an in vitro study.

Rate-dependent efficacy has been extensively documented in shock wave lithotripsy (SWL) stone comminution, with shock waves (SWs) delivered at a low rate producing more efficient fragmentation in comparison to those delivered at high rates. Cavitation is postulated to be the primary source underlying this rate phenomenon. Residual bubble nuclei that persist along the axis of SW propagation can ...

متن کامل

Damage Potential of the Shock-induced Collapse of a Gas Bubble

Numerical simulations are used to evaluate the damage potential of the shock-induced collapse of a pre-existing gas bubble near a rigid surface. In the context of shock wave lithotripsy, a medical procedure where focused shock waves are used to pulverize kidney stones, shock-induced bubble collapse represents a potential mechanism by which the shock energy directed at the stone may be amplified...

متن کامل

Cavitation in Shock Wave Lithotripsy: the Critical Role of Bubble Activity in Stone Breakage and Kidney Trauma

OBJECTIVE: Shock Wave Lithotripsy (SWL) is the use of shock waves to fragment kidney stones. We have undertaken a study of the physical mechanisms responsible for stone comminution and tissue injury in SWL. SWL was originally developed on the premise that stone fragmentation could be induced by a short duration, high amplitude positive pressure pulse. Even though the SWL waveform carries a prom...

متن کامل

Dynamics of Bubble Oscillation in Constrained Media and Mechanisms of Vessel Rupture in Shock Wave Lithotripsy

Rupture of small blood vessels is a primary feature of the tissue injury associated with shock wave lithotripsy (SWL), and cavitation has been implicated as a potential mechanism. To improve our understanding of the damage mechanism, dynamics of SWL-induced bubbles in constrained media were investigated. Silicone tubing and cellulose hollow fibers (i.d.=0.2 ~ 1.5 mm) were used to fabricate vess...

متن کامل

Innovations in Lithotripsy Technology

The introduction of shock wave lithotripsy (SWL) in the early 1980's revolutionized the surgical management for kidney stone disease. Since then, although numerous 2 and 3 r generation lithotripters have been developed using various means for shock wave generation, focusing, patient coupling and stone localization, the technical improvements in these devices were largely made based on practical...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of the Acoustical Society of America

دوره 110 6  شماره 

صفحات  -

تاریخ انتشار 2001